197 research outputs found

    Walking through volcanic mud : the 2,100 year-old Acahualina footprints (Nicaragua) II: the Acahualina people, environmental conditions and motivation

    Get PDF
    We analyzed bare human footprints in Holocene tuff preserved in two pits in the Acahualinca barrio in the northern outskirts of Managua (Nicaragua). Lithology, volcanology, and age of the deposits are discussed in a companion paper (Schmincke et al. Bull Volcanol doi: 10.1007/s00445-008-0235-9, 2008). The footprint layer occurs within a series of rapidly accumulated basaltic–andesitic tephra that is regionally correlated to the Masaya Triple Layer Tephra. The people were probably trying to escape from a powerful volcanic eruption at Masaya Caldera 20 km farther south that occurred at 2.1 ka BP. We subdivided the swath of footprints, up to 5.6 m wide, in the northern pit (Pit I) into (1) a central group of footprints made by about six individuals, the total number being difficult to determine because people walked in each other’s footsteps one behind the other and (2) two marginal groups on either side of the central group with more widely spaced tracks. The western band comprises tracks of three adjacent individuals and an isolated single footprint farther out. The eastern marginal area comprises an inner band of deep footprints made by three individuals and, farther out, three clearly separated individuals. We estimate the total number of people as 15–16. In the southern narrow and smaller pit (Pit II), we recognize tracks of ca. 12 individuals, no doubt made by the same group. The group represented in both pits probably comprised male and female adults, teenagers and children based on differences in length of footprints and of strides and depth of footprints made in the soft wet ash. The smallest footprints (probably made by children) occur in the central group, where protection was most effective. The footprint layer is composed of a lower 5–15-cm thick, coarse-grained vesicle tuff capped by a medium to fine-grained tuff up to 3 cm thick. The surface on which the people walked was muddy, and the soft ash was squeezed up on the sides of the foot imprints and between toes. Especially, deep footprints are mainly due to local thickening of the water-rich ash, multiple track use, and differences in weight of individuals. The excellent preservation of the footprints, ubiquitous mudcracks, sharp and well-preserved squeeze-ups along the margins of the tracks and toe imprints, and the absence of raindrop impressions all suggest that the eruption occurred during the dry season. The people walked at a brisk pace, as judged from the tight orientation of the swath and the length of the strides. The directions of a major erosional channel in the overlying deposits that probably debouched into Lake Managua and the band of footprints are strictly parallel, indicating that people walked together in stride along the eastern margin of a channel straight toward the lake shore, possibly a site with huts and/or boats for protection and/or escape

    Laetoli's lost tracks: 3D generated mean shape and missing footprints.

    Get PDF
    The Laetoli site (Tanzania) contains the oldest known hominin footprints, and their interpretation remains open to debate, despite over 35 years of research. The two hominin trackways present are parallel to one another, one of which is a composite formed by at least two individuals walking in single file. Most researchers have focused on the single, clearly discernible G1 trackway while the G2/3 trackway has been largely dismissed due to its composite nature. Here we report the use of a new technique that allows us to decouple the G2 and G3 tracks for the first time. In so doing we are able to quantify the mean footprint topology of the G3 trackway and render it useable for subsequent data analyses. By restoring the effectively 'lost' G3 track, we have doubled the available data on some of the rarest traces directly associated with our Pliocene ancestors

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    Acute Cellular Alterations in the Hippocampus After Status Epilepticus

    Full text link
    The critical, fundamental mechanisms that determine the emergence of status epilepticus from a single seizure and the prolonged duration of status epilepticus are uncertain. However, several general concepts of the pathophysiology of status epilepticus have emerged: (a) the hippocampus is consistently activated during status epilepticus; (b) loss of GABA-mediated inhibitory synaptic transmission in the hippocampus is critical for emergence of status epilepticus; and, finally (c) glutamatergic excitatory synaptic transmission is important in sustaining status epilepticus. This review focuses on the alteration of GABAergic inhibition in the hippocampus that occurs during the prolonged seizures of status epilepticus. If reduction in GABAergic inhibition leads to development of status epilepticus, enhancement of GABAergic inhibition would be expected to interrupt status epilepticus. Benzodiazepines and barbiturates are both used in the treatment of status epilepticus and both drugs enhance GABA A receptor-mediated inhibition. However, patients often become refractory to benzodiazepines when seizures are prolonged, and barbiturates are often then used for these refractory cases of status epilepticus. Recent evidence suggests the presence of multiple GABA A receptor isoforms in the hippocampus with different sensitivity to benzodiazepines but similar sensitivity to barbiturates, thus explaining why the two drug classes might have different clinical effects. In addition, rapid functional plasticity of GABA A receptors has been demonstrated to occur during status epilepticus in rats. During status epilepticus, there was a substantial reduction of diazepam potency for termination of the seizures. The loss of sensitivity of the animals to diazepam during status epilepticus was accompanied by an alteration in the functional properties of hippocampal dentate granule cell GABA A receptors. Dentate granule cell GABA A receptor currents from rats undergoing status epilepticus had reduced sensitivity to diazepam and zinc but normal sensitivity to GABA and pentobarbital. Therefore, the prolonged seizures of status epilepticus rapidly altered the functional properties of hippocampal dentate granule cell GABA A receptors, possibly explaining why benzodiazepines and barbiturates may not be equally effective during treatment of the prolonged seizures of status epilepticus. A comprehensive understanding of the cellular and molecular events leading to the development, maintenance, and cytotoxicity of status epilepticus should permit development of more effective treatment strategies and reduction in the mortality and morbidity of status epilepticus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65664/1/j.1528-1157.1999.tb00873.x.pd

    Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms

    Get PDF
    The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology

    Identification and Interpretation of Longitudinal Gene Expression Changes in Trauma

    Get PDF
    The relationship between leukocyte gene expression and recovery of respiratory function after injury may provide information on the etiology of multiple organ dysfunction.To find a list of genes for which expression after injury predicts respiratory recovery, and to identify which networks and pathways characterize these genes.Blood was sampled at 12 hours and at 1, 4, 7, 21 and 28 days from 147 patients who had been admitted to the hospital after blunt trauma. Leukocyte gene expression was measured using Affymetrix oligonucleotide arrays. A linear model, fit to each probe-set expression value, was used to impute the gene expression trajectory over the entire follow-up period. The proportional hazards model score test was used to calculate the statistical significance of each probe-set trajectory in predicting respiratory recovery. A list of genes was determined such that the expected proportion of false positive results was less than 10%. These genes were compared to the Gene Ontology for 'response to stimulus' and, using Ingenuity software, were mapped into networks and pathways.The median time to respiratory recovery was 6 days. There were 170 probe-sets representing 135 genes that were found to be related to respiratory recovery. These genes could be mapped to nine networks. Two known pathways that were activated were antigen processing and presentation and JAK-signaling.The examination of the relationship of gene expression over time with a patient's clinical course can provide information which may be useful in determining the mechanism of recovery or lack of recovery after severe injury
    corecore